LRU cache
August 5, 2022
linked-list designProblem URL: LRU cache
We will use a hashmap to lookup the key in out cache and a link list to keep track of most and least used cache item.
# Definition for dubly-linked list.
class Node:
def __init__(self, key, val):
self.key = key
self.val = val
self.prev = self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.cache = {}
self.left = Node(0, 0) # LRU
self.right = Node(0, 0) # MRU
self.left.next = self.right
self.right.prev = self.left
def remove(self, node):
prev, nxt = node.prev, node.next
prev.next, nxt.prev = nxt, prev
def insert(self, node):
prev, nxt = self.right.prev, self.right
prev.next = nxt.prev = node
node.next, node.prev = nxt, prev
def get(self, key: int) -> int:
if key in self.cache:
self.remove(self.cache[key])
self.insert(self.cache[key])
return self.cache[key].val
return -1
def put(self, key: int, value: int) -> None:
if key in self.cache:
self.remove(self.cache[key])
self.cache[key] = Node(key, value)
self.insert(self.cache[key])
if len(self.cache) > self.capacity:
lru = self.left.next
self.remove(lru)
del self.cache[lru.key]
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
Time Complexity: O(1)
for each operation
Space Complexity: O(k)
, k is the size of the cache